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Abstract: 

The problem of building genome-wide predictors of individual risk to complex diseases seems

to be more challenging than it was thought when the first human genome was sequenced on

2003. We have build different enhanced genetic risk predictors from genome-wide data and 

different complex diseases, making use of  haplotypes accurately ascertained from family 

trios. We confirmed the widely known inability to accurately predict individual risk to 

complex diseases returned by the state-of-the-art genome-wide predictors. This result is 

mainly due to the small effect that most genetic variants have in a disease. We also  found 

out that rates of missing genotypes were usually too high for these small-effect variants, as 

we could force missing imputation in such a tricky way that we would build highly accurate 

predictors, either by using our own design or the state-of-the-art genetic predictors.  We 

observed that unknown genotypes were not missing at random but related to disease 

affectation, with more missing genotypes in affected than in non-affected individuals. We 

were not able to find a way to accurately reduce missing rates to correctly improve accuracy,

but we identified a common pattern of missing data in multiple sclerosis, asthma and autism 

that makes us think that other complex diseases could behave the same way. Because (1) 

missing rates are high enough to completely change risk prediction due to the small-effect of 

most of the variants, and (2) there are more missing genotypes in affected than in non 

affected individuals, we conclude that perhaps the widely known defeat in genomic profiling 

for complex diseases may be solved by looking closer to the way current genotyping 

technologies handle genetic variants that may be rare in reference panels but have some 

effect in a given complex disease. 
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1. Introduction

Since genome-wide association studies started, building genetic predictive models of individual 

risk to highly polygenetic diseases has became a very challenging task.  As an example, in Multiple 

Sclerosis (MS) the state-of-the-art predictive Area Under the ROC Curve (AUC), around 0.64 [1], 

was achieved by using the common weighted Genetic Risk Score (wGRS), while it should be around

0.95 by considering risk prevalence and disease heritability. In fact we theoretically inferred  

AUCmax for MS in Europe to be between 0.9463 (Spain) to 0.9589 (Sweden). We inferred these 

values from Equations 1 (page 2) and 3 (page 4) in a work publishing the expected AUC for some 

diseases [2]. We considered sibling recurrence risk λS = 7.1 [3] and disease prevalence from the 

European countries with the highest differences: 0.015 in Spain [4] and 0.189 in Sweden [5]. 

Optimistic opinions about genomic profiling have often flourished to dry soon under the 

evidence that only under simulations the individual risk can be predicted as expected given the 

heritability and prevalence of the disease under study.

We began this work after realizing the limits of the state-of-the-art approaches for genomic 

profiling, such as wGRS [1]. We worked under two generalizations of those common approaches: 

(1) to fix no limit in the number of SNP loci used in order to take into account very small effects 

and (2) to use haplotypes instead of just genotypes as a way to keep cosegregation information 

that may help to better detect risk loci [6,7]. 

By following these rules, we designed a new genome-wide based method to predict individual 

risk to a complex disease [8]. We built a very accurate predictor of MS but we were not able to 

replicate our results in other MS data sets, much less in other complex diseases we tried. At some 

point after years of tries and defeats, we realized that our first MS predictor was trickily built and 

our results were wrong. After a few more years of tries, we had to admit that the accuracy of our 

risk predictors, in agreement with those returned by the state-of-the-art genetic predictors of 

complex diseases, were far lower than what it should be expected given heritability and disease 

prevalence of the diseases used.

From so many failures we, by pure chance, discovered an informative missing pattern in all the 

data sets analysed except for the one corresponding to the Attention Deficit Hyperactivity 

Disorder (ADHD). All the other diseases analysed during this work have at least 45-50% heritability 

(twin studies in adults: MS 50-64% [9,10], asthma 75-90%  [11,12], autism 50-90% [13] and caries 

45-67% [14]). However, ADHD has the highest variability and most discussed in the estimation of 

heritability, with the lower bound estimation being only around 30% (twin studies in adults: 30-

80% [15]).   

The causes of the informative missing pattern found in most the data sets analysed is therefore 

a new research line that has been opened as a result of  this long research. In this work we will 

show the methods used and the experiments performed that have helped to find out this results. 

We believe this result may be clue to shred some light in the highly challenging task of building 

genetic profiling for complex diseases from genome-wide data.
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2. Materials and Methods

2.1. Data sets of family trios, genotype calls and quality control procedures

Data sets from external Genome Wide Association Studies (GWAS)  .   We used IMSGC, a data set 

generously provided by one of the authors of a MS GWAS performed on family trios by the 

International MS Genetics Consortium (IMSGC) [16] with the Thermo Fisher Scientific array (by 

that time it was Affymetrix) Affymetrix500K. The data set contains the genotype calls and pedigree

data of 931 trios once quality control (QC) was performed. There was an affected parent (a 

mother) in this data set. In a posterior step we also used the IMSGC data set at dbGaP in order to 

perform genotype calls and to try different parameters for the QC procedures, such as detection 

of Mendelian inconsistencies and Hardy-Weinberg Equilibrium (HWE), by ourselves. To process 

raw intensity files, we used the apt-probeset-genotype software provided by Affymetrix with the 

BRLMM algorithm recommended for its Affymetrix500K array [17]). We also used another data 

set, Asthma, with the genotype calls and pedigree data of the 1323 family trios (after passing QC) 

from a GWAS of asthma performed by the Genes-environments & Admixture in Latino Americans 

(GALA I) study, which was also provided by the authors of that study [18]. We also got access 

through the data base of Genotypes and Phenotypes (dbGaP) to other three data sets with the 

genotypes and pedigrees of 896, 1323, 178 family trios of Attention Deficit and Hyperactivity 

Disorder (ADHD), autism (Autism) and dental caries (Caries) respectively. For all of them we used 

as well genotype calls after passing QC. As the GWAS conducted for dental caries used also 

case/control subjects and couples we first selected only the 178 family trios whose pedigrees 

could be clearly ascertained by us. Table 1 shows information about the microarrays used in all 

these studies. 

A replication data set for MS from our own GWAS. With the intention to replicate our primary 

AUC results obtained with the IMSGC data set [8], we conducted a new GWAS from 80 Spanish 

family trios with offspring affected by MS (MS-ES). The Spanish cohort consisted of 80 trios, all 

natives of Spain. MS patients were diagnosed according to published criteria [19,20]. High-

molecular-weight DNA was isolated from whole blood using the Flexigene Kit (Qiagen, Hildren, 

Gemany) according to the manufacturer's protocol. Genotyping was performed using Affymetrix 

6.0 array at the Spanish National Genotyping Center's facilities at Santiago de Compostela 

University (http://www.cegen.org). To keep the conditions as similar as possible, and avoid 

performing genotype imputation, we used Affy 6.0, the most similar array but that time to the one

used by the IMSGC, having a larger set of SNPs but including all the SNPs in the IMSGC data set. 

We used the Birdseed algorithm provided by apt-probeset-genotype to perform genotype calls in 

Affy 6.0, the most similar to the one provided by its Affymetrix500K array, BRLMM). We also tried 

different configurations of the QC procedures, as we did with the IMSGC data set. 

2.2. Methods 

Study design.  The most widely-used approach to build genome-wide predictors is based on the

use of genotypes and the wGRS from which a simple logistic regression model is defined by a given

individual x: ln O(x) = ln (p(D|x) / (1 – p(D|x))) = α 0 + α 1  wGRS(x), with wGRS(x) = Σ i w I x i ,  x i being 

the individual genotype (0/1/2) at each locus i , w i  the odds ratio at that locus and O(x) the odds 

of the risk of the genome-wide individual genotype x. Each individual genotype at a given locus is 
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composed by the nucleotide the individual has at that locus in each homologous chromosome. As 

the genotyping arrays select relatively-common polimophisms at nucleotide level (Single 

Nucleotide Polymorphisms or SNPs), for each position there will be only two different nucleotides 

and therefore the genotype for each locus may be represented by 0/1/2 for  homozygotic wild, 

heterozygotic and homozygotic mutant genotypes respectively. As it can be observer from the 

definition of the wGRS, it assumes an additive genetic model, as the value x i  of a homozygous 

individual for the risk allele to the disease at a locus i, is double than a heterozygous one.

We used family trio data sets instead of case control ones for two reasons, the first one was to 

avoid spurious association due to population stratification.  The second reason was to use 

genome-wide haplotypes instead of just genotypes to keep information of real genetic 

transmission and transcription patterns. Therefore, we defined an haplotype-based wGRS 

(hwGRS), an extension of the wGRS approach based on haplotypes [8] . As we needed highly 

accurate haplotypes, we had to recover them from family trios. 

Naive Bayes classifier (NBC) and wGRS. In order to learn the coefficients α 0 and α 1  of a wGRS, 

we assumed that loci are conditionally independent given the disease outcome (D), the 

assumption made by NBC, and that the two alleles A and B at each locus i are identically 

distributed and conditionally independent given D. Under these assumptions, we probed that

σ 0=ln
p (D )

1− p (D )
+2∑

i

ln
p ( Ai /D )

p ( Ai /D )

and σ 1=1holds [8].  Simpler coefficient values have been assumed by others [1]: σ 0=0 (no 

intercept) and σ 1=1.

Haplotype-based predictors. We actually built risk predictors using hwGRS for a given haplotype h,

from which a simple logistic regression model is defined by a given genome-wide haplotype h: 

lnO (h )= ln
p (D /h )

1− p (D /h )
=α 0

h
+α 1

hhwGRS (h )

with 

hwGRS (h )=∑
i

wihi

being the allele (0/1) at each locus i and w i the odds ratio at that locus.  With the same assumption

we did for wGRS, the coefficient values were probed to be: 

σ 0
h
=ln

p (D )

1− p (D )
+∑

i

ln
p ( A i /D )

p ( A i /D )

and α 1
h
=1 [8]. hwGRS is used to independently estimate the risk for the two genome-wide 

haplotypes an individual has, one from the genome inherited from the father and the other one 

from the mother. They were combined assuming a recessive genetic model. We also tried 

dominant and additive genetic models [8]. To graphically understand the difference between 

hwGRS and wGRS, see Figures 1 and 2 for a wGRS and our generalization, hwGRS, respectively. 
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Association test. To measure the association between each locus and the disease, we applied 

2GTDT  [21], a generalization of the TDT test for family trios, in which association loci has to be 

detected in two independent subsets of family trios to get rid of spurious association due to 

random genotyping errors. Therefore, only when it is confirmed in the second subset, the locus 

was chosen in order to build the predictor. 2GTDT is a multimarker transmission disequilibrium 

test based on the 2G approach [21] that is able to collapse the haplotypes in only two groups: high

and low risk. By using 2G, the haplotype for each locus in the hwGRS does not need to be a 

nucleotide but just a binary value resulting from the summarization of haplotypes of any length to 

only 2 values representing low (0) and high (1) risk of that haplotype to the disease.  As it occurs 

for hwGRS, 2G can also be used as a way to generalize a common wGRS in order to collapse SNPs 

that are suspected to be in strong linkage disequilibrium (LD).

wGRS from hwGRS. We derived the relationship between wGRS and hwGRS from the 

relationship between the logistic regression for genotypes (wGRS) as the sum of the logistic 

regressions for each genome-wide haplotype (hwGRS for h1 and h2)) and the ln of the odds on the

disease: 

lnONBC
(x )= lnONBCh (h1 )+ lnONBCh

(h2 )– ln
p (D )

1− p (D )

with NBC and NBCh meaning the assumptions made are those of a NBC for three-value 

(genotypes) and binary (haplotypes) variables respectively [8]. 

Therefore, instead of using the same 2G approach as a preprocessing step to obtain genotypes 

representing more than one SNP position, and to compute wGRS afterwards, we can make use of 

this relationship in order to use 2G as a common preprocessing step for both predictive 

approaches, if we want to compare outcomes of predictors under the wGRS and the hwGRS 

approaches. 

Genetic risk scores an  d training-test sampling.   We built risk predictors by learning the odds 

ratio of the hwGRS from a training data set and measured accuracy, AUC, sensitivity and specificity

on an independent test data set (generalization capacity). Therefore, only a subset of the original 

data set is used to learn the model. For the IMSGC data set, 500 trios were randomly selected as 

the training data subsets and the remaining ones made up the test data subset. The number of the

randomly chosen trios to make up the training data subsets from the other data sets was 500, 300,

500, and 140 for ADHD, Asthma, Autism and Caries respectively. 

Sliding windows. In order to better identify significant associations when the causal loci are not 

in the array but SNPs in linkage disequilibrium with them  are, we extended wGRS by using more 

than one SNP for each input variable. To this end, we used sliding windows of different sizes: 1, 2, 

5, 10, 20, 30, 40 and 50. 

Significance threshold. We used different thresholds of p values to compare the predictor 

performance. As we used a training-test approach, large thresholds, or even to use all the loci 

should not reduce the predictor specificity and its specificity could arise as those loci with low or 

very low effect on the disease are not disregarded.

Page 5/27



Genome-wide genotype imputation and meta-analysis method. As we were strongly focused on

the task of building accurate predictors, close to the AUC expected due to population prevalence 

and inheritance of each complex disease, we had to suspect of every single state-of-the-art pre-

processing step conducted by studies building individual risk predictors (genetic profiles) from 

genome-wide data. Therefore, we decided to avoid genotype imputation in all the studies 

conducted, as it assumes that Mendelian errors or departures from HWE are random and this may

not be true and thus to provoke crucial information. In order to do that, we try two approaches: 

(1) to use a data set without passing QC and (2) to follow a meta-analysis method so that QC was 

independently applied on the original (IMSGC) and the validation (MS-ES) data sets and, 

afterwards, only the common SNPs between the two data sets after passing QC were selected. 

As stated above, 2GTDT is robust to random genotyping errors, as the association has to be 

confirmed on a second and independent subset of samples than the one used to choose the risk 

loci.

 The second approach, the meta-analysis method, although does not use the validation data set

to learn the predictor, is not that good as the first one because there are some shared pre-

processing information, as those SNPs removed by the QC step are also removed from the primary

data set.  

Completely independent data sets. Even if we do not perform QC at all and rely only in the 

robustness of 2GTDT to random genetic errors, it is not true that the predictor is built and tested 

from two completely independent data sets, as they come from the same GWAS and their 

genotypes have been called at the same time. We therefore also conducted independent 

genotype calls for the two data subsets of IMSGC so that they are completely independent. 

Replication analysis. We estimated accuracy and AUC in a different data set used as a second 

validation: MS-ES. We only used those genotypes included in the IMSGC data set.  As explained 

above, to avoid imputation we used two different approaches.

Ethics Statement. All participants required to obtain the genotypes for the MS-ES data set were

recruited and blood extracted during routine hospital visits to the MS unit at Hospital Universitario

Virgen Macarena in Seville, Spain, after giving written informed consent under Macarena Hospital 

Institutional Review Board.

3. Results

3.1. Predictor performance cannot be replicated

We started this work after doing some tries to build a risk predictor for Crohn disease from a 

reduced set of SNPs (103) genotyped in 129 family trios and being aware of the substantial 

advantages of using haplotypes instead of only genotypes, as GRS or wGRS do. This data set was 

used to show how rTDT [22], a robust extension of TDT to handle missing genotypes, were able to 

detect possible type I and type II errors when missing data were not ignored. 
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When we had access to the IMSGC data set, we designed a risk predictor (hwGRS) able to make

use of the haplotype information. It returned an AUC value of ~0.8 when using no filtering for the 

SNPs selected as input variables and sliding windows had at least 30 SNPs length. This AUC was 

significantly higher to the state-of-the-art AUC for MS from genetic data (~0.64), reached by a 

wGRS built using only 16  SNPs highly associated with MS [1]. Our results were much closer to 

what it should be expected given genetic prevalence and heritability of MS (~0.9). We showed 

that, when using filtering or just genotypes instead of haplotypes, results dropped to the standard 

AUC results, which supported the idea of using genome-wide haplotypes and a recessive model 

(see Figure 3 and Figure 4 a).

As we were highly concerned by this highly astonishing AUC reached by hwGRS under a 

recessive model, we only dared to publish our method and results as a work in process [8]. We 

decided to perform our own GWAS (data set MS-ES) with the intention to confirm and replicate 

this result. We only used 80 trios because of budget limitations.

However, after many tries, we were unable to obtain good results at all (AUC was below 0.65) 

and for about 2 years were completely unable to understand the reason. What it was worse: when

we tried to repeat the experiment with another version of the IMSGC, obtained from dbGaP, we 

could not replicate the first results (see Figures 3 and 4). 

 This low generalization capacity was in agreement with results obtained by other state-of-the-

art multiplex predictors [1,7] and it is against the theoretical AUC estimated for several highly 

complex diseases, in which there may be thousand predictors of low or very low disease effect [2].

The cause could not be attributed to an overfitting problem, a problem that arises when the 

learning algorithm used to learn the model does not take into account a threshold between the 

sample size of the training set used to build the model and the model complexity itself. In fact, we,

as others [7], used a training-test method to avoid overfitting. Moreover, a weighted genetic risk 

score is equivalent to a naïve Bayesian network [23], the most simple model for a Bayesian 

network, as it does not consider between-variant dependencies given the disease outcome. If the 

training data set is too small to capture some small-effect variants, the weight (usually odds ratio) 

for these variants will be commonly underbiased and sensitivity results measured in the test data 

set will be very low.  This is the main issue that most multiplex predictors of complex diseases 

have and why a possible solution to improve their low predictive capacity is not to change the 

algorithms used to learn the multiplex predictor but to significantly increase the number of  

individuals genotyped in order to learn the model. 

At some point we realized the software implementation by the time we started using the other 

data sets, including the IMSGC data set downloaded from dbGaP, had changed a lot and the most 

important difference was that the missing data were not imputed in the way we did with the 

IMSGC data set the first time we built our predictor. We focused therefore in the task of 

discovering what was the difference between the two versions of IMSGC we had.
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We decided to try at least to extend these results to any of all the other diseases for which 

there was a trio data set that we could get access through the NIH dbGaP: caries, ADHD and 

autism. We also had a data set of asthma in a Latino population [18]. We were not able to obtain 

noticeable results for AUC under the same training/test sampling approach. We actually obtained 

quite low AUC values, by considering all the configurations of window sizes and p value thresholds 

used for MS  (~ 0.60-0.65). For ADHD the results showed an almost null genetic effect (AUC values 

were very close to 0.5, which means there is almost random guessing). For technical reasons we 

could not finish testing the predictors in autism and caries. 

On September 1st 2016, we first time were able to understand the way we were imputing 

missing genotypes in the first version of IMSGC data set.  We even enhanced the preprocessing 

steps and were able even to increase AUC to values closer to that expected for MS by considering 

disease prevalence and heritability (~0.90).  However, at that time, we thought that it was not a 

bias but the correct way to impute missing data introduced by us by pure chance and therefore we

should do the same with MS-ES, the Spanish data set. We were very confident we would now be 

able to replicate our results. 

It was a step forward, even if we were still really far away from the truth. We were able to 

impute missing data in almost the same way we did first time. We actually coded a better 

implementation of what it was done by chance the first time: to impute data in order to favour the

transmission of the allele that, in the known genotypes, is the less transmitted one -sometimes 

just called the minor allele under the TDT approach-, an imputation method we called cT. The AUC

was significantly higher and we finally were able to obtain the same results from the IMSGC data 

set version we downloaded from the dbGaP server. 

The most important knowledge learned in this step was that missing data was crucial for the 

correct performance of a genome-wide risk predictor, i.e., to reach an AUC close to the theoretical

value. When using the cT approach in the replication dataset (MS-ES) we were able to reach 

similar AUC rates. When we used the cT approach with ADHD data set and AUC did barely 

improve. This could  support the claims that genetics on ADHD is not that important [15]. 

3.2. Studying the missing pattern 

We were very suspicious and  afraid of publishing highly positive results that could be wrong. 

We decided to try first a different experiment to check whether the missing patterns were 

consistent in both data sets. Because of this, we employed some time trying to understand the 

missing pattern and we made other some interesting discoveries. We showed that the missing 

pattern, before any transformation, in the IMSGC (Figure 5) and  MS-ES (Figure 6) data sets was 

not random but informative. In fact, there were more missing genotypes in affected individuals 

(offspring) than in unaffected (parents) ones in all the chromosomes. As there was one affected 

parent we showed that missing rates for this individual were, for all chromosomes, closer to 

average rates in offspring than in the other parents (Figure 7). We also studied the pattern of 

Mendelian errors and observed they were skewed towards the minor allele in all the 

chromosomes (see Figure 8).
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We confirmed the same missing pattern found in the two MS data sets in other two data sets 

we got accessed to: asthma and autism  (see Figures 9 and 10 respectively).  

We also observed that the pattern did not hold in ADHD data set (Figure 11), which was 

consistent with the low AUC on the test data set returned by the predictor we built. 

When using the caries data set, we observed the pattern was not consistent among 

chromosomes (see Figure 12). As we did not have performance results for the caries predictor, we 

did not make any conclusion about it. 

In order to check that the informative missing pattern was different in a trio data set of healthy 

individuals, we also made the same plot for the CEPH data set from the HapMap project (Figure 

13). It was very interesting to observe a consistent informative missing pattern among 

chromosomes but exactly in the opposite way: there were more missing genotypes in parents 

than in children. The explanation seemed to be clear: in a trio data set, the genotypes of offspring 

appear twice (once in the offspring, once in their parents -half in the father and the other half in 

the mother-) while only half of the parental genotypes are repeated (the part transmitted to their 

offspring). Therefore, their alleles become easier to be ascertained by the genotype calling 

algorithms. 

3.3. A highly upbiased predictor: identifying the sources of error

At some point on October 2016 we realized that neither the cT approach or MUT (another 

approach we tried in which missing are completed in order to increase the transmission of the 

mutant allele), could not be used for the test data set, as it imputes parents -most of them are 

unaffected and therefore used to compute specificity- in a different way than offspring. 

Moreover, in the way we imputed data, instead of reducing type I errors and make the 

predictor most robust to missing data even at a cost of a lower sensitivity, we were doing exactly 

the opposite for SNPs with a low or very low contribution to the disease: increasing type II errors 

and upbiasing the predictor sensitivity. This was due to a wrong implementation of the cT 

approach. In fact, our first computer programs for genome-based studies with family trios 

imputed missing data as their default configuration, as most algorithms did not allow missing 

values. Trying to avoid type I errors even at a cost of a higher level of type II errors, the missing 

data were imputed in order to reach the minimum value of rTDT [22], an approach that we have 

called cT in this work. However our implementation was too simple and actually wrong for 

genome-wide data sets. By that time and because our only experience was with a short data set of

only 129 trios and only 103 SNP (the Crohn data set) [22], we missed some issues to this 

implementation that would only arise with larger data sets and a greater number of SNPs, as the 

IMSGC data set used in the work here described. In fact, we imputed missing data at a given SNP 

locus in order to maximize the transmission of the minor allele. By that time, we did not take into 

account that, in the case of many missing genotypes, imputing all of them the same way may 
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switch the minor allele into the major allele. Therefore, by computing the TDT statistics t  this way 

on these data, rather than being equal to tmin  -that it should be actually 0-, it may become much 

larger than t  without missing imputation. When we were still unconscious of this big issue of the 

cT approach and we reimplemented the software trying to better apply the cT approach, the 

upward bias was actually higher. In fact, undert this approach, for SNPs with a low or very low 

effect to the disease, t is actually estimated almost as the tmax interval upper bound in rTDT, so that

we would get much more false positive SNPs associated with the disease.

3.4. Reviewing the methods used to build the predictors

On light of this result, we started trying many different ways to perform genotype calls, impute 

missing data, select training and test data subset, etc. in order to obtain an AUC for MS closer to 

its expected value considering disease prevalence and heritability. 

We tried to keep missing genotypes, or, once alleles are completed from the family trios, to 

impute the still missing alleles with any method that do not differentiate between parents and 

offspring. As an example we tried to impute by using the mutant or minor allele (MU approach) or 

the c allele (the one with the lowest transmission). We also tried MUexp, an approach consisting 

on imputing missing genotypes by the minor allele but only genotypes randomly chosen in a 

proportion given by the exponential function y=0.000001 exp x, with x being the p value of the test

that measured missing differences between affected and unaffected individuals within the training

data set. As an example, for a SNP with p value 0.1, the proportion of genotypes to be randomly 

chosen to be imputed by the minor allele would be ~25% while for p value 0.05 it would be ~50%. 

When we tried to implement this solution we decided to apply it before imputing missing 

genotypes in offspring that can be inferred from their parents, in order to avoid altering missing 

rates in offspring before applying the MUExp method because of family data.

We also introduced a change in the way to impute missing genotypes. So far, we had never 

allowed or introduced Mendelian errors when imputing a genotype. This time we thought about 

allowing it, as Mendelian errors seemed to be skewed towards the minor allele (Figure 8) and 

therefore it could be an important cause of individual risk that we should not disregard. In fact, 

together with this, we decided to enhance TDT in order to measure skewness of Mendelian errors 

towards one allele. The way to do that is just to “correct” Mendelian errors in the training data 

subset by changing parental alleles. As an example, if a trio genotype is 11/12/22 (father, mother 

and offspring respectively) the correction would change the father genotype for it to be 

heterozygous: 12/12/22. This way, both parents would contribute to increase counts in 2G-TDT.

We tried these approaches and many others without any success at all. 

3.5. Trying to recover information from the missing genotypes

We decided to have a closer look to the missing pattern so that we could observe if it depends 

on the known genotypes of the other family members in the trio. Under this criterion, there are 
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only three of them that can be imputed with no ambiguity: those with both parents homozygous  

(see Figure 14). There are 17 different types of missing patterns with ambiguous missing 

genotypes (see Table 2 at the work about rTDT [22] and Figure 15). These plots helped to 

understand that the minor allele (represented by the value 2) was more difficult to ascertain by 

the algorithms that make the genotype calls. It has to be noted that it was more difficult to make 

the call for a parent with the minor allele than for an offspring. In fact, missing rates for a trio (0,0)

(2,2)(2,2) (Figure 15) is double (~0.007) than for a child (2,2)(2,2)(0,0) (Figure 14). We cannot be 

sure whether the missing parent in trio genotype (0,0)(2,2)(2,2) is truly (2,2), as it could be also 

heterozygous. However, given the high missing rates, it seems that they would be most probably 

(2,2).

We also had a look to the raw intensity values and how genotypes were solved or left as 

missing by the algorithm that made genotype call. We wanted to observe whether there can be 

different patterns of missing genotypes. BRLMM [17], the one used by the IMSGC data set, which 

is based on DM [24]. DM considers there are four models for genotypes: heterozygous (1,2), 

homozygous wild (1,1) homozygous mutant (2,2) and null (when neither of the other three ones 

hold). We selected from MS-ES the five SNPs with higher missing rates in offspring than in parents 

(p vals from 1.129e-05 to 8.707e-05). We discovered that in three out of the five SNPs (see Figure 

16, plots corresponding to SNPs SNP_A-8311817,  SNP_A-1933659 and  SNP_A-2015495), the 

three-genotypes assumption was far from being observed in a real situation. In order to identify 

and understand different possible patterns of missing genotypes, we should understand first these

patterns of intensities. For a comparative purpose, we also made plots for the first five SNPs with 

more missing rates in parents than in offspring (as expected, p vals were significantly lower: from 

0.0005242 to 0.0022759). As it can be observed  (see Figure 17), only one of the SNPs (SNP_A-

1851845) does not show the three- genotypes pattern. However, in this case the calling algorithm 

has not been able to get trustable genotypes for most of the individuals (there are an enormous 

number of missing genotypes) as the rare patterns affect to many individuals.  

3.6. Genotype calling algorithms

We looked to the parameters that can be used with apt-probeset-genotype, a free 

implementation of BRLMM provided by Affymetrix. Among the many parameters that could be 

used, we saw the possibility of learning a clustering model for each SNP (the three centers and 

variances) from a data set and to use these models to call genotypes once the allele intensities 

were obtained. We made use of this possibility in order to understand if missing rates would 

change. We used only offspring from half of the training data randomly chosen to learn the 

clustering models. When we used these models to make the calls for the same samples and their 

parents, the missing rates differences changed the sign, this time with more average missing rates 

in parents than in offspring (see Figure 18). When we used the same model with the test data, 

again the common pattern of higher missing rates in offspring in all the chromosomes arised (see 

Figure 19). The explanation was in agreement with the already known genetic pattern of MS. The 

fact that using an independent set of offspring to learn the models and make the calls gives higher 

missing rates in offspring was showing that the variants related to MS risk in one offpsring data set

may not be the same than those in the other offspring data set. 
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We also tried other algorithm for clustering, different to the default Contrast Centers Stretchs 

(CCS), as we thought it could be better given what we knew so far about the missing calls. The 

algorithm just transformed intensities by their polar coordinates R vs θ (RvT). As a result, missing 

rates lowered in all the chromosomes and in both parents and offspring (data not shown). Figure 

20 shows overall missing rates using CCS and RvT with the same data set to learn the clustering 

model and make the calls (Training), with independent sets (Test) and using all samples together 

for both clustering model learning and genotype calls. As it was expected, the lowest rates were 

reached when using all the samples for both tasks but this may be a reason for a bad 

generalization capacity of the predictor, i.e., a lower accuracy in a validation data set or in single 

trio families whether the model reached an exploitation phase for clinic purposes. When the same

data set is used to learn the clustering model and make the calls (Training), the differential missing

pattern between parents and offspring are inverted, I.e. rates are lower in offspring, regardless the

clustering algorithm used. This result can be explained because of sample overfitting. 

Figure 1 A weighted Genetic Risk Score.
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Figure 2 A haplotype-based weighted Genetic Risk Score.
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Figure 3 Accuracy (y-axis) of genetic predictors for different sizes of multimarker variables (x-axis).

Comparison  between  hwGRS  with  no  filtering  (brown)  and  filtering  by  SNPs  with  strong

association to MS (green), and wGRS without filtering (orange) and filtering by the same SNPs

(blue). We recently discovered that these results were completely wrong. Source [8]. 

(a)

(b)

Figure 4 AUC for different p value (from 2G-TDT on the training data set) thresholds (“all” means

all SNPs were used) and different haplotype sizes (1 to 50). Model was learned from 500 trios

randomly chosen (training data set) and AUC was estimated from the remaining 431 trios (test

data set). (a) Results from ped files provided directly by IMSGC before they were released and put

in dbGaP. (b) Results from ped files in dbGaP. It has to be noted that source data  were almost the

same, the different was in the software changes we did to process each data sete by that time,

being unaware of them. 
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Figure 5 Line plots with average missing rates by chromosomes for parents and offspring in IMSGC

MS data set. Plots were produced by using the whole data set with 931 trios.

Figure 6  Line plot with average missing rates by chromosomes for parents and offspring in the

Spanish MS data set.  Plots were produced by using the whole data set with 80 trios. 
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Figure 7  Box plot by chromosomes for parents and offsprings in IMSGC data set. The average

missing rates for the affected parent are shown in red. 

Figure 8 Line plot with average Mendelian error rates by chromosomes towards major (blue color)

and minor allele (red color) in IMSGC data set. 
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Figure 9 Line plot with average missing rates by chromosomes for parents and offspring in ADHD

data set. The plots was produced by using the whole data set with 896 trios. 
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Figure 10 Line plot with average missing rates by chromosomes for parents and offspring in Caries

data set. The plots was produced by using the whole data set with 178 trios. 

Figure 11  Line plots with average missing rates by chromosomes for  parents and offspring in

HapMap CEPH data set. Plots were produced by using the whole data set with 30 trios. 
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Figure 12 Line plots by chromosomes for parents and offspring in the asthma data set.

Figure 13 Line plots by chromosomes for parents and offspring in the autism data set.

Figure  14  Missing  rates  in  the  three  missing  trio  genotypes  that  can  be  completed  with  no

ambiguity.
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Figure 15 Missing rates in the 17 missing trio genotypes that can be completed in different ways.

Figure 16 Scatter plots with intensities of A (x-axis) and B (y-axis) alleles in the five SNPs with more

missing genotypes in offspring compared to parents in the Spanish MS data set. A green circle

means a missing parental genotype while a blue diamond means a missing offspring genotype.

Homozygous type 1 genotypes are shown in yellow, heterozygous genotypes are shown in orange

and homozygous mutant are shown in red (circles for parents, diamonds for offspring).  

Figure 17 Scatter plots with intensities of A (x-axis) and B (y-axis) alleles in the five SNPs with more

missing genotypes in parents compared to offspring in the Spanish MS data set. A green circle

means a missing parental genotype while a blue diamond means a missing offspring genotype.
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Homozygous type 1 genotypes are shown in yellow, heterozygous genotypes are shown in orange

and homozygous mutant are shown in red (circles for parents, diamonds for offspring).  

Figure 18. Missing rates in offspring (blue line) vs parents (green line) using only the offspring to

learn the clustering model.

Figure 19. Missing rates in offspring (blue line) vs parents (green line) using an independent set of

offspring data set to learn the clustering model.
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Figure 20. Missing rates in offspring (blue line) vs parents (green line) using only the offspring to

learn the clustering model. The differential pattern of missing rates between parents and offspring

is inverted, i.e., there are lower rates of missing genotypes in offspring, when the same data set is

used to learn the clustering model and make genotype calls (“Training”), regardless the clustering

algorithm used. 

Table 1 Data sets used with sample size after passing QC, genotyping arrays and number of SNPs.

Trait # trios Source platform Number of SNPs

ADHD 896 Perlegen PERLEGEN − 600K 599171

Asthma 489 Affymetrix AFFY_6.0 934940

Autism 1323 Illumina ILLUMINA Human 1M 1069796

Caries 178 Illumina Human610 Quadv1 B 601273

IMSGC 931 Affymetrix Affymetrix500K 262264 (Mapping250K Nsp)
238304 (Mapping250K Sty)

MS-ES 80 Affymetrix AFFY 6.0 934940

4. Discussion

At a first glance, missing rates returned by algorithms that perform genotype calls seem to be 

very low to have any impact on genetic predictors of complex diseases. However, this is against to 

our results and we need to understand why. Under the hypothesis of “Common Disease, 

CommonVariant” (CDCV) for complex diseases etiology, current missing rates are actually low. 

However, under the hypothesis of “Common Disease, Rare Variant” (CDRV), these rates may result

very high. As it is believed that both hypothesis may coexist  in the genetics of complex diseases, 

perhaps in different forms of a disease [25], we claim that the role that rare or vary rare variants 
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play in complex diseases may explain the importance that missing rates have in the low 

performance of the current multiplex predictors. 

Due to missing genotypes, and because genetic predictors for complex diseases should use 

genome-wide approaches to capture also the contribution of perhaps thousand variants with very 

small effect on the disease, the cT approach that we were applying by error to complete missing 

genotypes, may cause a low-risk variant of a small effect marker to become a high-risk variant of a 

larger effect marker, in such a way that we will have a trend to raise type I errors, with higher 

power and lower specificity. The same effect occurs with other approaches that imputes missing 

genotypes in order to increase transmissions of always the same allele. All these approaches are 

also imputing in a different way unaffected individuals (parents) and affected ones (offspring) and 

therefore can never being applied on a test data set, as a test data set has to be as much closer to 

a real situation for the predictor to me clinically usable. When we were aware of this highly biased 

way to complete missing genotypes we tried either to ignore missing or to complete in different 

ways but always at the same manner in parents and children but we had not success at all.

Therefore, if we do not specially consider missing genotypes or we force genotype calls to 

always make a call even if it is done by almost random guessing, detected risk variants may be 

biased towards the major allele, which is not a problem as far as it is also the high-risk variant. 

However, whenever a high-risk variant is associated with the mutant allele, as it is more difficultly 

ascertained and there are more missing calls, its result may be to underbias the effect that a 

variant has on the disease. Therefore, predictors built on data with missing genotypes or with 

algorithms that forced genotype calling towards the major allele, may have a trend to mostly type 

II errors, showing very low power and high specificity. This situation is in agreement with the 

state-of-the-art genomic profiling of complex diseases, in which AUC is much lower than it should 

be and it is caused by a lack of power [7]. A similar trend against the high risk allele whenever it is 

also the minor allele, may occur in algorithms used to perform missing imputation and haplotype 

reconstruction. As genetic causes of complex diseases may come from hundred thousands of 

variants with very small effects, we also wonder whether current procedures for QC may not only 

remove noise but also a true signal. 

The singular distribution of intensities that were observed in three of the first five SNPs with 

more differences in missing rates between offspring and parents, is something to study in deep. 

Instead of using stringent QC procedures to remove Mendelian errors or to ignore missing 

genotypes, it may be worth to understand that raw intensities may not show the clear three-

cluster patterns (one for each genotype), perhaps due to copy number variation, deletions or 

other different causes. If these different patterns of intensities are frequent and they are 

associated with the disease, we cannot ignore them if we pursuit to build accuracy predictors. 

Therefore, they should be first understood before studying the patterns of missing and their 

differences between affected and affected individuals.  

5. Conclusions
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Nowadays, more than a year since the second grant to support this work finished, we do not 

know whether to use trios to better reconstruct haplotypes, to collape SNPs using 2G as a way to 

enhance the information of each variable in a GRS [21], to compute risk for each genome-wide 

haplotype by a hwGRS and to combine them under the assumption of a recessive model [8] 

actually would outperform the predictive capacity of other state-of-the-art genetic predictors. All 

of them have shown to be much worse than what it would be expected according to disease 

prevalence and inheritance whose occurrence they try to predict [7]. However, there is an 

important result from all this work that we reached by pure chance when were imputing missing 

SNPs being unaware of that: rates of missing genotypes were so high (by considering the impact of

many low-effect variants in complex diseases) that, if we defined the interval of all possible ways 

to impute them, as it was done for single SNP positions [22], we could move from models highly 

downbiased (very low sensitivity and very high specificity), to models highly upbiased (very high 

sensitivity at a cost of very low specificity). We have also shown that missing rates are, in all 

chromosomes, more frequent in offspring than in their parents in MS, asthma and autism, the 

three diseases among those that we used with a very high genetic component. This missing 

pattern was exactly the opposite one observed in a data set of control trios (CEPH from HapMap).

When the Human Genome Project finished on 2003, genetic profiling seemed to be an 

unquestionable consequence that would come very soon. However, we are right now far away to 

be able to build genome-wide genetic predictors of complex diseases that can be clinically usable 

[7].  The main cause usually given to explain this defeat, after so many years since the first human 

being was genotyped is the sample size. As in a complex disease there may be thousand variants 

with low effect and much more with very low effect, we would need larger data sets to capture 

this effect. 

As a results of this work, we believe this generalized lack of success many not only be solved by 

increasing samples sizes. We believe missing genotypes follow an informative missing pattern 

related to the disease. The same seems to occur with Mendelian errors. We believe they are not 

random and we would need to look closer to these patterns in order to assess whenever a missing 

or wrongly called genotype is associated to the disease that is being analysed or it can be 

considered random by that disease. Only if we are able to identify differences between a missing 

at random pattern and an informative missing pattern to disease risk, we would be able to decide 

which and how missing genotypes should be imputed.
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